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ABSTRACT
We present an unsupervised colorization framework to im-
prove both the visualization and the automatic land use clas-
sification of historical aerial images. We introduce a novel al-
gorithm built upon a cyclic generative adversarial neural net-
work and a texture replacement method to homogeneously
and automatically colorize unpaired VHR images. We ap-
ply our framework on historical aerial images acquired in
France between 1970 and 1990. We demonstrate that our ap-
proach helps to disentangle hard to classify land use classes
and hence improves the overall land use classification.

Index Terms— Colorization, Classification, Land Use,
Deep Learning, Texture filters

1. INTRODUCTION

Retrospective land use land cover (LULC) analysis is an on-
going research subject which has known a growing interest in
the epidemiological community to assess the environmental
factors leading to long latency diseases like cancer. In recent
work, researchers developed per-subject exposition scores to
agricultural pesticides based on geographical information sys-
tem (GIS) metrics. These methods have proved their effi-
ciency to overcome the absence of georeferenced epidemi-
ological data at the scale of a country. A prerequisite to the
calculation of these metrics is the availability of crop acreage
semantics. However, historical LULC are hardly available
with sufficient details (more than three land use classes) be-
fore 1990 in Europe, start of the Corine Land Cover program.

To face this limitation, automated computer vision meth-
ods have been investigated to estimate land use classes di-
rectly from monochromatic historical aerial images. They
used low level texture filters, classical machine learning al-
gorithms and deep convolutional neural networks. In these
previous studies, monochromatic images have been used due
to a lack of publicly available color and multispectral acqui-
sitions before 1990 [1]. But what if we could automatically
colorize grayscale images to improve land use classification?
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In this study, we present an unsupervised framework to
automatically colorize historical VHR images. This frame-
work is unsupervised, meaning that it can handle the absence
of historical color images that would have served as ground
truth data otherwise. It is also fully automated: It requires nei-
ther a reference image nor user scribbles at inference. More-
over, our framework aims at colorizing VHR images that can-
not fit in the memory during the colorization process (up to
12k x 12k pixels in our experiments). As a result, we demon-
strate that our framework is suitable for large scale GIS anal-
ysis by (1) generating qualitatively relevant color images, that
should be easier to analyze for a human, and that it (2) helps
to classify land use data.

The remaining of this paper is organized as follow. Sec-
tion 2 describes related work. Section 3 presents our unsu-
pervised colorization framework. Section 4 details our exper-
iments and discusses the results we obtained.

2. RELATED WORK

We recall that the goal of a colorization algorithm is to regress
a realistic N dimensional color value for all the pixels of
a grayscale image (e.g. R, G, B yield N = 3). Previous
studies proposed to solve this problematic with user guided,
hybrid [2] and automatic methods [3, 4]. Among them, au-
thors proposed the use of deep convolutional neural networks
(DCNN) following an encoder-decoder architecture in a su-
pervised manner. In particular, [3] proposed to jointly learn
a colorization and a classification model to improve the re-
sults’ quality of the colorization network. In [2], the authors
proposed an efficient way to train and use a DCNN with sup-
plementary local hints (i.e. user scribbles) and global hints
(i.e. reference images). On the other hand, generic image to
image translation methods have been developed, like Pix2Pix
[5] and CycleGan [6] (unsupervised). However, to our knowl-
edge, this study is the first attempt to exploit an unsupervised
colorization approach as a mean to improve the performance
of an external classification pipeline in the context of LULC
analysis.



Fig. 1. The proposed unsupervised colorization framework.

3. FRAMEWORK

There are two essential components in our colorization frame-
work. The first is Col-Cycle, an unsupervised generative ad-
versarial network based on cycle consistent representations.
The second is a simple yet efficient texture replacement ap-
proach to improve the visualization of VHR images made of a
mosaic of patches that have been colorized independently. We
decided to work patch-wise for practical computational rea-
sons: Patches allow a sparse representation of VHR images,
yielding to memory efficient and significantly faster process-
ing. Our complete framework is schematized on Figure 1.

3.1. Col-Cycle Network

Col-Cycle is a relatively small unsupervised network based
on a cyclic combination of generative adversarial neural net-
works (GANs). Similarly to existing unsupervised image-to-
image translation approaches, our colorization model is based
on two GANs that constrain a shared latent space. Both GANs
have the same architecture, but they don’t share their weights.
The architecture of the generators in Col-Cycle follows an
encoder-decoder architecture with only 1 input layer, 2 down-
sizing layers, 3 residual layers, 2 upsampling layers and 1
output layer. The input layer generates 64 feature maps us-
ing filters of 7x7 pixels. The output layer generates 3 feature
maps, also using 7x7 pixels filters. All other layers are made
of filters of 3x3 pixels. Downsizing layers divide the size of
the input by two using the stride value. They also double the
number of channels from the previous layer. The upsampling
layers operate the opposite operation of the downsizing lay-
ers. We decided to use bilinear interpolation and classical
convolutions instead of deconvolution filters in the upsam-
pling layers to avoid checkerboard artifact effects. We used

mean square error loss (MSE) for the GAN losses defined by
equation (1) and (2), and L1 losses for the other constraints
(see equations (3) and (4)) [6].

Let X stands for the domain of the grayscale images, and
let Y stands for the domain of the color images, which is
the RGB color space in our case. We define GANX−→Y =
{G,DY } and GANY−→X = {F,DX} as the GANs that are
respectively responsible for the grayscale to color and color to
grayscale translations. In the above definitions, G and F rep-
resent the generative networks (i.e. generators) and DY and
DX represent the discriminative networks (i.e. discrimina-
tors). The generators aim to convert an image from a domain
to another (i.e. grayscale ↔ color). The discriminators try
to classify the images between real and fake ones (e.g. col-
orized) in the domain specified by their indices. In a GAN
manifold, the goal of the generator is to fool the discrimina-
tor. The generator and the discriminator are trained through
GAN losses, respectively represented with equation (1) and
(2) for G and DY (equivalent equations for domain X).

LGGAN
=MSE(1, DY (G(IX))) (1)

LDYGAN
=MSE(1, DY (IY ))

+MSE(0, DY (G(IX)))
(2)

Additionally, a cycle is defined by the consecutive translation
of an image from domain X to Y to X (and vice versa), such
as ÎY = G(IX) and ÎXcycle

= F (ÎY ), with IX ∈ X and
IY ∈ Y . Cycle consistency is therefore expressed by target-
ing IX = ÎXcycle

(resp. IY = ÎYcycle
). It is represented with a

loss function applied to the generators and defined in equation
(3).

Lcycle = L1(IYcycle
, IY ) + L1(IXcycle

, IX) (3)

Moreover, to constrain the shared latent space and avoid ini-
tialization problems, we follow [6] by introducing an identity



loss as defined by equation (4). This loss helps to constrain
the generator to produce realistic images according to the tar-
geted domain.

Lid = L1(G(IY ), IY ) + L1(F (IX), IX) (4)

3.2. VHR Image Reconstruction and Texture Replace-
ment

The second step of our framework aims at generating VHR
color images using color patches generated with Col-Cycle.
To achieve this goal, we follow a simple yet efficient ap-
proach. We extract all possible non-overlaping patches of
1024 x 1024 pixels from a grayscale VHR image and we store
their region of interest coordinates. We use Col-Cycle to col-
orize all these patches independently. Finally, we create a
colorized VHR image by concatenating the colorized patches
based on their original coordinates. This process is easy to im-
plement and computationally efficient (no-overlap means no
redundancy). However, we can observe on Figure 2 that non-
overlaping patches seem to produce local non-linearity result-
ing in mosaic-like effects. These effects may be induced by
differences in both the generated texture (i.e. lightness) and
color components.

This observation lead us to the conclusion that 1) Col-
Cycle did not learn to preserve the grayscale intensities
(textures) very well and 2) may sometime produce VHR
images that have spatially inconsistent colors. In this study,
we only addressed the observation 1) using an intuitive ap-
proach. Starting from a VHR image colorized to the RGB
color space, we translate it to the LAB color space. Then,

Fig. 2. Visual results with mosaic like effect (orange circles).
Before (left) and after (right) texture replacement. Green cir-
cles indicate corrections, blue circles indicate remaining ef-
fects from color components.

we discard the L channel, and we replace it with the original
grayscale image IX . We call this approach texture replace-
ment.

As observed on Figure 2, texture replacement allows us to
improve the visualization quality of the generated VHR im-
ages by significantly reducing the mosaic-like effect (green
circles on Figure 2). However, it does not allow to erase
the visible inconsistency in the color space, for which further
work may be required (blue circles on Figure 2).

4. RESULTS AND DISCUSSION

We trained Col-Cycle for 200 epochs using Pytorch 0.4 and
two Nvidia 1080 TI Graphical Processing Units. The training
step was performed using 1702 patches of 1024 x 1024 pixels
extracted from recent color images and 572 patches of the
same size extracted from historical aerial images of France.
Texture replacement was applied only at inference, directly
on the colorized VHR images. We set up two experiments to
evaluate our approach.

4.1. Mean Opinion Score study

We performed a Mean Opinion Score (MOS) study to eval-
uate the colorization quality on a patch-wise basis after 60
epochs of training with Col-Cycle.

We asked anonymous annotators to subjectively evaluate
the color quality of 50 randomly selected images of 1024 x
1024 pixels (15 real, 35 colorized). We told the annotators
that some of these images were real color images while other
images were colorized using an algorithm. Based on this sole
knowledge, annotators had to provide a quality score between
1 (worst) and 5 (better) for each image without knowing if
the image was a real color image or not. Annotators had to
indicate if they had prior experience working with remotely
sensed data or not. In the following, annotators with prior
experience will be call Experts (resp. Non-Experts).

A total of 28 annotators answered to our study, compris-
ing 53.57% percent of Experts and 46.43% percent of Non-
Experts. We summarized the mean opinion scores of these
annotators on Figure 3. From an overall perspective, the col-
orized images obtained a MOS almost equal with the real
color images, with a slight difference of only 0.1 point (3.08
versus 3.18) in favor of the real ones: The color quality of the
generated images seems correct.

4.2. Application to classification

To evaluate our framework on a classification task, we ap-
plied Col-Cycle with texture replacement to colorize all the
81 VHR images used to create the HistAerial dataset1. Us-
ing these colorized images, we followed [1] and we extracted
images of 100 x 100 pixels for 7 LULC classes, resulting in

1http://eidolon.univ-lyon2.fr/ remi1/HistAerialDataset/



Fig. 3. Results of the Mean Opinion Score study to assess the
color quality. Obtained with 28 annotators on 50 images of
1024x1024 pixels. Highest is best.

a colorized version of the size-balanced subset of HistAerial
with 6 000 images per class for this image size. These images
were separated into train (63%), validation (27%) and test sets
(10%) according to the original HistAerial dataset. For each
colorized image represented in the LAB color space, we re-
trieved texture features on the L channel and color statistics on
the AB channels. For the texture features, we compared the
best performing handcrafted texture filter from [1] (LCOLBP)
and three of its opponents (CLBP, XCSLBP, LBPriu2 ) using
a 3-radii neighborhood. For the color features, we computed
the mean and the standard deviation for the A and B chan-
nels independently. As supplementary features, we extracted
4 statistics (kurtosis, skewness, variance, maximum) from the
histograms of the A and B channels, for a total of 12 color
features per patch. We concatenated the texture and color fea-
tures, over which we trained a random forest classifier with
100 decision trees, following the best classifier evaluated in
[1]. Other parameters of the random forest were fixed using
gridsearch from Scikit-learn.

The results are displayed on Figure 4 for different epochs
of the Col-Cycle training. We observe that colorizing the his-
torical aerial images tends to improve the top-1 classification
on the dataset by an average of 1.3%. We also observe that
training the network for much longer does not necessarily
provide higher results. This phenomenon may be explained
by the lack of control on the training of GAN-like networks:
As opposed to classification network, it is difficult to know
when to stop. Another explanation could be the absence of ex-
plicit constraints on the network to produce colors that could
explicitly help the classification process.

5. CONCLUSION

In this article, we presented a framework to colorize VHR
historical aerial images with qualitatively relevant colors for
both GIS Experts and Non-Experts. We demonstrated that the
generated colors help to classify LULC classes on historical
aerial images, improving the state of the art by 1.3% in av-
erage. Thanks to these encouraging results, future work will

Fig. 4. Top-1 accuracy on the HistAerial dataset (7 classes)
using low level texture descriptors and color features. Results
obtained with Col-Cycle and texture replacement at different
epochs.

focus on addressing the mosaic-like effects in the color space
of the colorized VHR images by improving the colorization
network and adding spatial consistency constraints. Multi-
spectral image to image translation will also be investigated
to further disentangle LULC classes. Our framework will be
applied to define LULC classes required to assess environ-
mental exposures in epidemiological studies.
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